Buy that special someone an AP Physics prep book, now with 180 five-minute quizzes aligned with the exam: 5 Steps to a 5 AP Physics 1

Visit Burrito Girl's handmade ceramics shop, The Muddy Rabbit: Yarn bowls, tea sets, dinner ware...

03 July 2012

Three principles for "technology in the classroom"

Computers -- or, now, iPads -- in the classroom for every student sounds like a great idea, and can be a successful grant pitch.  But beware how they're used...

Personal story:  A few years ago, our amazingly awesome IT guy asked if I’d like to try out a tablet computer.  He wanted feedback about whether he should move the faculty or classroom computers from standard laptops to tablets.  I said, sure – I thought the tablet would be especially useful in drawing diagrams when I designed physics problems, and to organize the handwritten notes I often take at conferences or events.*

*Turns out I was wrong.

I trundled out the tablet for the first time at the AP Physics reading.  All the table leaders were gathered together to present and discuss the rubrics we had written.  I took notes on the tablet for 90 minutes.  Nevertheless, I felt the call of Evil Homer throughout… I wonder how Tiger is doing in the US open?  What’s the score of the World Cup match?  What time do the Reds play tonight? 

Look.  I’m an old man, a professional, and I was thoroughly invested in the meeting at hand.  Yet I almost had to slap myself several times when I started to check sports scores.  Imagine if instead I were a horny teenager* trolling for unwholesome trysts via facebook. 

* Ed. Note: remove redundancy 

Now, I’m not disputing that there are times when a class set of computers, ipads, whatever can be useful.  Most obviously, laboratory exercises with computerized data collection are fun and pedagogically effective.   But even when everyone involved has the best of intentions, the internet-enabled computer is a distraction.  Connectivity reduces productivity in a classroom-style setting.  

How, then, do you make useful use of technology?  I recommend three basic principles.

1. Be sure your unsexy, fundamental equipment is rock solid FIRST, before you go fancy.  Do you have a reliable xerox machine, scanner, networked printer, LCD projector, teacher's desktop or laptop workstation, and computerized data collection hardware and software (such as a labpro or passport)?  If not, what the heck is your school doing mucking around with iPads?  Get the basics taken care of before playing with anything else.

2. Don't go out of your way to design activities for your computers / iPads.  Most student-centered laboratory work in a first-year physics course should be done with 1950s-era equipment: masses, pulleys, stopwatches, resistors, lenses, etc.  You can and should use computerized data collection regularly for in-class demonstrations, of course.  I'm suggesting, though, that the computer can too easily become a "magic box" rather than a tool.  Be sure your students can graph by hand, and have done so bazillions of times, before you allow them to use excel.  The front-end instruction time teaching every student how to use, say, a vernier current probe, plus the frustration involved when they screw up, isn't worth it -- use a simple ammeter instead.

So when would you use a computer (or iPad)?  When the computer can do something that can't be done easily otherwise.  For example, give everyone a set of motion graphs, and ask them to duplicate them using a motion detector and a cart.  Use the iPad magnetometer app (or a Vernier magnetic field probe) to measure the magnetic field near a current carrying wire; a compass can work, but it takes a lot of math to get to the magnetic field value.  Use a free app like freqgen  (review forthcoming) as a continuous digital frequency generator.  I do astronomy simulation labs and investigations using "Starry Night," inexpensive computer astronomy software.  Certainly you can find numerous uses for the computer or iPad.  Just be sure that you're not using technology for its own sake, or to please an administrative request.

3. Be active during the activity.  I'm not suggesting that you be a warden, scanning the crowd for inappropriate websites.  Nor am I suggesting you go all Miami Dophins by imposing ridiculous punishments for misuse.*  Just walk around the class, and show authentic interest in their activity.  If you're on your feet, helping with software issues, getting involved in everyone's work, the class will be unlikely to screw around.  And if anyone does, you can deal with it immediately, quietly, and firmly.

* The Miami Dolphins, an American professional football team, gave each player on the team an iPad with their playbook included as an interactive application.  Great idea -- normally pro football playbooks are phonebook-thick.  Problem is, some idiot in the organization decided to threaten the players with a $10,000 fine for "inappropriate" use of the iPad, apparently including youtube, social media, or (presumably) porn.  Never mind that a professional football player can afford to buy his own dang CASE of iPads so he can do what he wants with them.  The threat of a fine was no more than bigshot coaches showing their players who's boss.  

1 comment:

  1. Great article!
    I've always felt like I'm a Luddite, insisting that graphs get done by hand. My students haven't graphed very much by the time I get them, and I want them to know what they are doing. Lines of best fit - they are just looking for general shapes here - lines of regression can wait.

    I have GLXs (data loggers) and we can see graphs there, but for collected data, get out the graph paper!