Buy that special someone an AP Physics prep book: 5 Steps to a 5: AP Physics 1

Visit Burrito Girl's handmade ceramics shop, The Muddy Rabbit: Yarn bowls, tea sets, dinner ware...

22 August 2014

Required Reading: Kelly O'Shea's "Mistake Game"

Reason number 156 why I love teaching physics:  I don't care how long you or I have been doing this job, there's always something new to learn and to try.  

I looked again last night at Kelly's O'Shea's excellent "Physics! Blog!"  Kelly was the one who first articulated the holy grail of physics teaching, the ability of students to solve "goal-less problems."  While clicking some attractive links I discovered* not the holy grail, but perhaps the shroud of Turin:  Whiteboarding with the "Mistake Game."

* I also discovered that Kelly independently made a Clever Hans reference two years before I did.

I am well aware of the verb "to whiteboard," and I'm extensively tutored in its benefits.  It's not like I disagree with or disapprove of the technique; I just haven't yet found a place for it in my classes.  I've always managed to accomplish everything intended in a whiteboarding session by using pencil-and-paper.  Kelly's post has changed my mind, by introducing the critical element: the deliberate substantive mistake.

You should read Kelly's post directly for the details about her Mistake Game.  My quick summary:  Give several groups of students a problem to whiteboard... but each group is required to intentionally include one substantive mistake.*  The groups take turns presenting their solutions to the class.  Since they're charged with selling the solution, including the deliberate mistake, the students actively engage their audience.

* They're allowed to include as many unintentional mistakes as they'd like.

The mistakes are to be discovered through questioning.  Kelly says she has to teach audience members to ask substantive questions in pointing out the substantive mistakes -- not "hey, that's wrong, the slope is the wrong way" but "Which way was the car moving?" followed by "And how does a position-time graph indicate the direction of motion?"

I've always wanted to bring the methodology of the Physics Fight into my honors physics classroom, but I never found a way that made me comfortable.  Usually a typical honors-level problem is complex, but not complex enough to provoke real discussion and conversation except on rare special occasions.  As Kelly points out, the requirement of a substantive mistake facilitates that discussion -- the presenters vie to create a mistake that is "good" enough to pass the audience's examination, while the audience members vie not just to discover but to engage in conversation about the mistake.  Imagine that... to get authentic discussion, I need to require inauthentic but authentic-seeming mistakes.  Kelly, that's practically Zen.


No comments:

Post a Comment