Buy that special someone an AP Physics prep book, now with five-minute quizzes aligned with the exam: 5 Steps to a 5 AP Physics 1

Visit Burrito Girl's handmade ceramics shop, The Muddy Rabbit: Mugs, vases, bowls, tea bowls...

22 February 2024

A daily quiz based on 2023 AP Physics 1 question 1 - Did you *understand* how to do the homework problem?

It's getting toward the back half of the school year in AP Physics 1.  I've made a first pass at all the major content units; we've done laboratory activities out the wazoo.  We're gearing toward one more half-length practice AP exam before spring break, and then a final half-length practice in mid April.

My students need practice doing cumulative, AP-like problems which require synthesis of multiple concepts; or which require students to choose from the entire year's menu of possible approaches.  Later on, in April and May, I'll have students do authentic AP free response questions in class practically every day, without a safety net.  We're not quite ready to take the safety net away.

No, right now, I'm assigning AP-style free response questions as collaborative out-of-class work.  Everyone is encouraged to collaborate, to seek help when they're stuck.  As long as they get to the correct answers eventually, I'm happy that they're making progress.

You have questions about this approach.  "Even the most honest, diligent students will often just do what their smart friend told them to do, Greg.  Getting done with the assignment is more important than getting it done right.  Even with the five-foot rule religiously followed, at least some students are parroting, not learning, not progressing."  

Unless there's disincentive for pure parroting.  And I don't mean grade disincentive.

The approach I use - which is absolutely not the only effective approach! - this time of year is the daily quiz based on the AP-style problem.  When students come to class, I collect their assignment.  But the first four minutes of class are basic questions about the problem they did for homework.  We trade and grade the quiz, then I collect the quiz.  

Someone who understood the problem, even if they had to be nudged hard in the right direction, can do the quiz just fine.  Someone who truly parroted the smart kid cannot do the quiz.

Yet!  Even the student who parroted and then flunked the quiz has made progress!  The point of the quiz isn't to play gotcha, it's to review the problem in a context in which the students will listen.  If I say "Imma go over last night's homework," no one cares.  But if I say, "here's the answer to question 1 on the quiz and how I know, now mark your classmate's paper right or wrong," I get rapt attention.

My class is contract graded, which means there's no shame for poor performance, no cookie for being perfect.  What's the incentive, then, to take the assignment and quiz seriously?  If someone does particularly poorly on the quiz or problem set, I bring them in for a consultation to redo the quiz.  I just had a student in while I was writing this post.  It took him a relatively short time to redo the problem perfectly, with clear justifications for each part (including the parts that didn't initially require justification).  He didn't get this problem at first, but the combination of attempting it for homework, trying the quiz, and grading someone else's quiz meant that he gained a serious understanding of this problem.

Your ideas are intriguing to me, and I wish to subscribe to your newsletter.  Okay, here's issue 1: a quiz based on the 2023 AP Physics 1 exam problem 1.   Notice how the quiz gets to the essence of the solution without just asking "what was the answer".  This quiz brought forth excellent questions from the class about the physics behind the original question.  It made them think!



A cart oscillates, as shown above and on the problem set last night.

1. Point A on the graph is labeled in red.  On figure 1, draw and label where the cart is located at position A.

2. Point B on the graph is labeled in blue.  On figure 1, draw and label where the cart is located at position B.

3. How is frequency related to period?

4. What is the equation for the period of an object on a spring?

5. When a block is dropped on the cart, does the frequency of oscillation increase, decrease, or stay the same?

6. When a block is dropped on the cart, does the amplitude of oscillation increase, decrease, or stay the same?

7. When a block is dropped on the cart, does the maximum potential energy of the cart-block-spring system increase, decrease, or stay the same?

8. When a block is dropped on the cart, does the maximum kinetic energy of the cart-block-spring system increase, decrease, or stay the same?

9. When a block is dropped on the cart, does the maximum speed of the cart-block-spring system increase, decrease, or stay the same?

2 comments:

  1. Tangential question, Greg: I teach AP C Mechanics and looking through the AP 1 2023 FRQ's, some of those questions -- parts of them, anyway -- seem appropriate for my Mech. C class students. Would you consider those AP 1 questions a good source of practice for Mech. C students? Thanks!

    ReplyDelete
  2. Oh, absolutely! Too often, because physics C is so math intensive, C students focus on the math rather than the concepts. They think that because they can solve any equation or integral, they understand the physics... then they're flummoxed when they are asked to *set up* the mathematics to be solved.

    If I were teaching physics C-mechanics as a first year course, I'd start with pure Physics 1. Only in the latter part of the year would I have students doing calculus and other math-heavy problems. I think especially starting with the exam revisions in 2025, C students without a solid conceptual background will flounder.

    So yes, use P1 questions on mechanics topics (which is, from 2020-2024, all of them) for your physics C students!

    ReplyDelete