## 08 August 2009

### First day of school -- DO PHYSICS

Think about the experience of high school students on the first day of school. They will likely attend four to six academic classes, each for somewhere between 40 and 90 minutes. What will happen in those classes?

Most teachers will take care of administrative minutia. Pass out and read the syllabus, hand out and sign for textbooks, go over rules of the class, how grades are assigned, and blah b-b-blah blah blah. Perhaps a few perceptive teachers might undertake a short discussion about the class’s overall goals, like “What was the most important event in American History?” But I would hazard that in most classes, the actual content covered on the first day is minimal, passive, and non-essential.

Physics can be different.

I teach juniors and seniors only, in general and in AP physics. Presumably the 16-18 year olds in my classes can read; so I send them the syllabus ahead of time via email, and make them read it. Presumably my upperclassmen have learned how to behave in a high school class; so I consider it unnecessary and condescending to discuss a list of class rules such as “respect one another” or “no chewing gum.” (How would YOU feel if you attended a conference which started with a litany of restrictive, prescriptive rules behind which is the underlying assumption that you will do all of these naughty things but for the recitation of said rules?)

Within fifteen minutes of my students’ arrival on the first day of AP, I dive into physics. We define a force as a push or a pull, measured on a scale; I write the definition of an object in equilibrium, and show how to solve equilibrium problems. By the end of the first day, the class is ready for the following quiz (which leads off day 2):

The box pictured above moves at constant speed to the left. Which of the following is correct?

(A) The situation is impossible. Since more forces act right, the block must move to the right.
(B) T3 > T1 + T2
(C) T3 < T2 + T2
(D) T3 = T1 + T2
(E) A relationship between the forces cannot be determined.

And then on day 2, I show with a quantitative demonstration how to deal with a force that acts at an angle. We’re off and running, such that the problems on the SECOND NIGHT OF CLASS are at the AP-level.

The same principle applies to general physics – on the very first day we are making position-time graphs with the motion detector, such that the second night’s problems can involve serious graphical kinematics.

And since most other teachers are talking about the penalties for late work while I’m holding an active class complete with demonstrations, I instantly capture attention. I do think that, in general, physics is more entertaining than most other subjects. But if nothing else, on day one I’ve made students FEEL like my class is special.